PRX Quantum (Jul 2021)

Adaptive Variational Quantum Dynamics Simulations

  • Yong-Xin Yao,
  • Niladri Gomes,
  • Feng Zhang,
  • Cai-Zhuang Wang,
  • Kai-Ming Ho,
  • Thomas Iadecola,
  • Peter P. Orth

DOI
https://doi.org/10.1103/PRXQuantum.2.030307
Journal volume & issue
Vol. 2, no. 3
p. 030307

Abstract

Read online Read online

We propose a general-purpose, self-adaptive approach to construct a variational wave-function ansatz for highly accurate quantum dynamics simulations based on McLachlan’s variational principle. The key idea is to dynamically expand the variational ansatz along the time-evolution path such that the “McLachlan distance”, which is a measure of the simulation accuracy, remains below a set threshold. We apply this adaptive variational quantum dynamics simulation (AVQDS) approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model, where it captures both finite-rate and sudden post-quench dynamics with high fidelity. The AVQDS quantum circuits that prepare the time-evolved state are much shallower than those obtained from first-order Trotterization and contain up to 2 orders of magnitude fewer cnot gate operations. We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum-computing devices will be made possible through the AVQDS framework.