Yankuang ceshi (Nov 2013)

Determination of Cu, Pb and Zn in Sulfide Ores by Polarized Energy Dispersive X-ray Fluorescence Spectrometry

  • KUAI Li-jun,
  • ZHAN Xiu-chun,
  • FAN Xing-tao,
  • WEN Hong-li,
  • YUAN Ji-hai

Journal volume & issue
Vol. 32, no. 6
pp. 903 – 908

Abstract

Read online

The traditional sample preparation methods are pressed powder pellets and glass melting to determine major components for sulfide ores by X-ray Fluorescence Spectrometry. However, for high sulfur geological samples, the preparation method of pressed powder pellet has mineralogical effects and particle size effects, and the glass melting method has the disadvantage of being corrosive to precious metal crucibles. Development of a simple sample preparation method for principal components analysis is essential to meet the requirements for exploration of mineral deposits. In this paper a method is presented to determine Cu, Pb, Zn contained in sulfide ores. This method utilizes Polarized Energy Dispersive X-ray Fluorescence Spectrometry (PE-EDXRF) along with nitric acid and fluoric acid digestion, and is calibrated by standard solution. The accuracy and precision of the method were examined by analyzing reference materials GBW 07162 to GBW 07168. The test results indicate that the relative standard deviations (RSD, n=6) of the most elemental components are less than 5%, when the concentrations of copper, zinc and lead are more than 1%. The results are in good agreement with certified values of reference materials. The impact of matrix effects such as particle size effect and mineral effect on analytical elements has been eliminated by digestion sample and direct solution inlet. The problem of calibrating concentrations that were short of standard materials has been solved with the matrix matching. The technology of PE-EDXRF provides a new means of ore analysis in the laboratory and a new technical support for PE-EDXRF field analysis for high sulfide samples.

Keywords