Cell Reports (May 2017)

Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

  • Heather S. Smallwood,
  • Susu Duan,
  • Marie Morfouace,
  • Svetlana Rezinciuc,
  • Barry L. Shulkin,
  • Anang Shelat,
  • Erika E. Zink,
  • Sandra Milasta,
  • Resha Bajracharya,
  • Ajayi J. Oluwaseum,
  • Martine F. Roussel,
  • Douglas R. Green,
  • Ljiljana Pasa-Tolic,
  • Paul G. Thomas

DOI
https://doi.org/10.1016/j.celrep.2017.04.039
Journal volume & issue
Vol. 19, no. 8
pp. 1640 – 1653

Abstract

Read online

Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

Keywords