BMC Molecular and Cell Biology (Nov 2021)

Spinoculation and retronectin highly enhance the gene transduction efficiency of Mucin-1-specific chimeric antigen receptor (CAR) in human primary T cells

  • Alireza Rajabzadeh,
  • Amir Ali Hamidieh,
  • Fatemeh Rahbarizadeh

DOI
https://doi.org/10.1186/s12860-021-00397-z
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Producing an appropriate number of engineered cells is considered as one of the influential factors in the successful treatments with chimeric antigen receptor (CAR) T cells. To this aim, the transduction rate of the viral vectors can play a significant role. In addition, improving transduction rates can affect the success rate of this treatment due to hard-transduced T lymphocytes. Results In this study, activated T cells were transduced using different transduction methods such as spinoculation, retronectin, polybrene, spinoculation + retronectin, and spinoculation + polybrene after selecting the most efficient transfection method to produce recombinant viral particles containing MUC1 CAR. PEI and lipofectamine with the amount of 73.72 and 72.53%, respectively, showed the highest transfection rates with respect to calcium phosphate (14.13%) for producing lentiviral particles. However, the cytotoxicity of transfection methods was not significantly different. Based on the results, spinoculation + retronectin leads to the highest transduction rates of T cells (63.19 ± 4.45%) relative to spinoculation + polybrene (34.6 ± 4.44%), polybrene (10.23 ± 0.79%), retronectin (10.37 ± 1.85%), and spinoculation (21.11 ± 1.55%). Further, the polybrene (40.02%) and spinoculation + polybrene (48.83% ± 4.83) increased cytotoxicity significantly compared to other groups. Conclusion Improving transduction conditions such as using spinoculation with retronectin can ameliorate the production of CAR-T cells by increasing the rate of transduction, as well as the success rate of treatment.

Keywords