International Journal of Nanomedicine (Jun 2014)
In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles
Abstract
Giovanni Baldi,1 Costanza Ravagli,1 Filippo Mazzantini,1 George Loudos,2 Jaume Adan,3 Marc Masa,3 Dimitrios Psimadas,2 Eirini A Fragogeorgi,2 Erica Locatelli,4 Claudia Innocenti,5,6 Claudio Sangregorio,5,7 Mauro Comes Franchini4 1CERICOL, Sovigliana-Vinci, Italy; 2Technological Educational Institute of Athens, Athens, Greece; 3Leitat Technological Center, Barcelona, Spain; 4Department of Industrial Chemistry Toso Montanari, University of Bologna, Bologna, 5Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 6Dipartimento di Chimica U Schiff, Università di Firenze, Firenze, 7Centro Nazionale delle Ricerche (ICCOM – CNR), Firenze, Italy Abstract: Polymeric nanoparticles with targeting moieties containing magnetic nanoparticles as theranostic agents have considerable potential for the treatment of cancer. Here we report the chemical synthesis and characterization of a poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-based nanocarrier containing iron oxide nanoparticles and human epithelial growth factor receptor on the outer shell. The nanocarrier was also radiolabeled with 99mTc and tested as a theranostic nanomedicine, ie, it was investigated for both its diagnostic ability in vivo and its therapeutic hyperthermic effects in a standard A431 human tumor cell line. Following radiolabeling with 99mTc, the biodistribution and therapeutic hyperthermic effects of the nanosystem were studied noninvasively in vivo in tumor-bearing mice. A substantial decrease in tumor size correlated with an increase in both nanoparticle concentration and local temperature was achieved, confirming the possibility of using this multifunctional nanosystem as a therapeutic tool for epidermoid carcinoma. Keywords: magnetic nanoparticles, polymeric nanocarriers, skin cancer, hyperthermia, single-photon emission computed tomography, imaging