Frontiers in Immunology (Oct 2020)

Approaching Inflammation Paradoxes—Proinflammatory Cytokine Blockages Induce Inflammatory Regulators

  • Ming Liu,
  • Ming Liu,
  • Jason Saredy,
  • Ruijing Zhang,
  • Ruijing Zhang,
  • Ying Shao,
  • Yu Sun,
  • William Y. Yang,
  • William Y. Yang,
  • Jirong Wang,
  • Jirong Wang,
  • Lu Liu,
  • Charles Drummer,
  • Candice Johnson,
  • Fatma Saaoud,
  • Yifan Lu,
  • Keman Xu,
  • Li Li,
  • Xin Wang,
  • Xiaohua Jiang,
  • Xiaohua Jiang,
  • Hong Wang,
  • Hong Wang,
  • Xiaofeng Yang,
  • Xiaofeng Yang,
  • Xiaofeng Yang

DOI
https://doi.org/10.3389/fimmu.2020.554301
Journal volume & issue
Vol. 11

Abstract

Read online

The mechanisms that underlie various inflammation paradoxes, metabolically healthy obesity, and increased inflammations after inflammatory cytokine blockades and deficiencies remain poorly determined. We performed an extensive –omics database mining, determined the expressions of 1367 innate immune regulators in 18 microarrays after deficiencies of 15 proinflammatory cytokines/regulators and eight microarray datasets of patients receiving Mab therapies, and made a set of significant findings: 1) proinflammatory cytokines/regulators suppress the expressions of innate immune regulators; 2) upregulations of innate immune regulators in the deficiencies of IFNγ/IFNγR1, IL-17A, STAT3 and miR155 are more than that after deficiencies of TNFα, IL-1β, IL-6, IL-18, STAT1, NF-kB, and miR221; 3) IFNγ, IFNγR and IL-17RA inhibit 10, 59 and 39 proinflammatory cytokine/regulator pathways, respectively; in contrast, TNFα, IL-6 and IL-18 each inhibits only four to five pathways; 4) The IFNγ-promoted and -suppressed innate immune regulators have four shared pathways; the IFNγR1-promoted and -suppressed innate immune regulators have 11 shared pathways; and the miR155-promoted and -suppressed innate immune regulators have 13 shared pathways, suggesting negative-feedback mechanisms in their conserved regulatory pathways for innate immune regulators; 5) Deficiencies of proinflammatory cytokine/regulator-suppressed, promoted programs share signaling pathways and increase the likelihood of developing 11 diseases including cardiovascular disease; 6) There are the shared innate immune regulators and pathways between deficiency of TNFα in mice and anti-TNF therapy in clinical patients; 7) Mechanistically, up-regulated reactive oxygen species regulators such as myeloperoxidase caused by suppression of proinflammatory cytokines/regulators can drive the upregulation of suppressed innate immune regulators. Our findings have provided novel insights on various inflammation paradoxes and proinflammatory cytokines regulation of innate immune regulators; and may re-shape new therapeutic strategies for cardiovascular disease and other inflammatory diseases.

Keywords