Separations (Dec 2023)
Effects of Hydrolysis Condition and Detection Method on the Monosaccharide Composition Analysis of Polysaccharides from Natural Sources
Abstract
Monosaccharide composition analysis is essential to the structural characterization and research into the biological activity of polysaccharides. In this study, a systematic comparison was performed among commonly used monosaccharide composition analysis methods, including colorimetric and chromatographic methods. These were tested on 16 aldoses, ketoses, alditols, amino sugars, and uronic acids. Furthermore, the effect of hydrolysis methods was also investigated. The results showed that the phenol sulfuric acid method is greatly affected by the type of monosaccharide that is used as the reference substance. The determination of uronic acid using sulfuric acid carbazole is less affected by neutral sugars than that method using m-hydroxybiphenyl. The high-performance thin-layer chromatography (HPTLC) method can simultaneously analyze multiple samples and accurately determine the type of uronic acid. High-performance liquid chromatography (HPLC) can provide a good qualitative and quantitative analysis of aldose, amino sugars, and uronic acids, while gas chromatography–mass spectrometry (GC-MS) can detect aldose, ketose, and alditols. Fructose was detected in a large amount in inulin and Codonopsis pilosula after one-step hydrolysis, while it was totally destroyed in two-step hydrolysis. The release of galacturonic acid significantly increased after two-step hydrolysis in pectin and Lycium barbarum, which indicated that one-step hydrolysis is not enough for acidic polysaccharides. The results of this study are beneficial for selecting appropriate hydrolysis and analysis methods in order to accurately analyze the monosaccharide compositions of natural polysaccharides.
Keywords