Journal of Food Protection (Jul 2024)
Potential for Glove Risk Amplification via Direct Physical, Chemical, and Microbiological Contamination
Abstract
This review focuses on the potential direct physical, chemical, and microbiological contamination from disposable gloves when utilized in food environments, inclusive of the risks posed to food products as well as worker safety. Unrecognized problems endemic to glove manufacturing were magnified during the COVID-19 pandemic due to high demand, increased focus on PPE performance, availability, supply chain instability, and labor shortages. Multiple evidence-based reports of contamination, toxicity, illness, deaths, and related regulatory action linked to contaminated gloves in food and healthcare have highlighted problems indicative of systemic glove industry shortcomings. The glove manufacturing process was diagramed with sources and pathways of contamination identified, indicating weak points with documented occurrences detailed. Numerous unsafe ingredients can introduce chemical contaminants, potentially posing risks to food and to glove users. Microbial hazards present significant challenges to overall glove safety as contaminants appear to be introduced via polluted water sources or flawed glove manufacturing processes, resulting in increased risks within food and healthcare environments. Frank and opportunistic pathogens along with food spoilage organisms can be introduced to foods and wearers. When the sources and pathways of glove−borne contamination were explored, it was found that physical failures play a pivotal role in the release of sweat build-up, liquefaction of chemical residues, and incubation of microbial contaminants from hands and gloves. Thus, with glove physical integrity issues, including punctures in new, unused gloves that can develop into significant rips and tears, not only can direct physical food contamination occur but also chemical and microbiological contamination can find their way into food. Enhanced regulatory requirements for Acceptable Quality Limits of food−grade gloves, and the establishment of appropriate bioburden standards would enhance safety in food applications. Based on the information provided, together with a false sense of security associated with glove use, the unconditional belief in glove chemical and microbiological purity may be unfounded.