Complexity (Jan 2018)
Evaluation for Sortie Generation Capacity of the Carrier Aircraft Based on the Variable Structure RBF Neural Network with the Fast Learning Rate
Abstract
The neural network has the advantages of self-learning, self-adaptation, and fault tolerance. It can establish a qualitative and quantitative evaluation model which is closer to human thought patterns. However, the structure and the convergence rate of the radial basis function (RBF) neural network need to be improved. This paper proposes a new variable structure radial basis function (VS-RBF) with a fast learning rate, in order to solve the problem of structural optimization design and parameter learning algorithm for the radial basis function neural network. The number of neurons in the hidden layer is adjusted by calculating the output information of neurons in the hidden layer and the multi-information between neurons in the hidden layer and output layer. This method effectively solves the problem that the RBF neural network structure is too large or too small. The convergence rate of the RBF neural network is improved by using the robust regression algorithm and the fast learning rate algorithm. At the same time, the convergence analysis of the VS-RBF neural network is given to ensure the stability of the RBF neural network. Compared with other self-organizing RBF neural networks (self-organizing RBF (SORBF) and rough RBF neural networks (RS-RBF)), VS-RBF has a more compact structure, faster dynamic response speed, and better generalization ability. The simulations of approximating a typical nonlinear function, identifying UCI datasets, and evaluating sortie generation capacity of an carrier aircraft show the effectiveness of VS-RBF.