BMC Genomic Data (Aug 2024)

Genetic variation and association of yield, yield components, and carbon storage in sorghum (Sorghum bicolor [L.] Moench) genotypes

  • Asande Ngidi,
  • Hussein Shimelis,
  • Seltene Abady,
  • Vincent Chaplot,
  • Sandiswa Figlan

DOI
https://doi.org/10.1186/s12863-024-01256-4
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Trait heritability and the response to selection depend on genetic variation, a prerequisite to developing sorghum varieties with desirable agronomic traits and high carbon sequestration for sustainable crop production and soil health. The present study aimed to assess the extent of genetic variability and associations among agronomic and carbon storage traits in selected sorghum genotypes to identify the best candidates for production or breeding. Fifty genotypes were evaluated at Ukulinga, Bethlehem and Silverton sites in South Africa during the 2022/23 growing season. The following agronomic and carbon storage traits were collected: days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), grain yield (GY), harvest index (HI), shoot carbon content (SCc), root carbon content (RCc), grain carbon content (GCc), total plant carbon stock (PCs), shoot carbon stock (SCs), root carbon stock (RCs), and root-to-shoot carbon stock ratio (RCs/SCs), and grain carbon stock (GCs). Higher genotypic coefficient of variations (GCVs) were recorded for GY at 45.92%, RB (39.24%), RCs/SCs (38.45), and RCs (34.62). Higher phenotypic coefficient of variations (PCVs) were recorded for PH (68.91%), followed by GY (51.8%), RB (50.51%), RS (41.96%), RCs/SCs (44.90%), and GCs (41.90%). High broad-sense heritability and genetic advance were recorded for HI (83.76 and 24.53%), GY (78.59 and 9.98%), PB (74.14 and 13.18%) and PCs (53.63 and 37.57%), respectively, suggesting a marked genetic contribution to the traits. Grain yield exhibited positive association with HI (r = 0.76; r = 0.79), DTH (r = 0.13; r = 0.31), PH (r = 0.1; r = 0.27), PB (r = 0.01; r = 0.02), RB (r = 0.05; r = 0.06) based on genotypic and phenotypic correlations, respectively. Further, the path analysis revealed significant positive direct effects of SB (0.607) and RB (0.456) on GY. The RS exerted a positive and significant indirect effect (0.229) on grain yield through SB. The study revealed that PB, SB, RB, RS, RCs, and RCs/SCs are the principal traits when selecting sorghum genotypes with high yield and carbon storage capacity.

Keywords