IJAIN (International Journal of Advances in Intelligent Informatics) (Nov 2023)

Deep learning mango fruits recognition based on tensorflow lite

  • Mas Rina Mustaffa,
  • Aainaa Azullya Idris,
  • Lili Nurliyana Abdullah,
  • Nurul Amelina Nasharuddin

DOI
https://doi.org/10.26555/ijain.v9i3.1368
Journal volume & issue
Vol. 9, no. 3
pp. 565 – 576

Abstract

Read online

Agricultural images such as fruits and vegetables have previously been recognised and classified using image analysis and computer vision techniques. Mangoes are currently being classified manually, whereby mango sellers must laboriously identify mangoes by hand. This is time-consuming and tedious. In this work, TensorFlow Lite was used as a transfer learning tool. Transfer learning is a fast approach in resolving classification problems effectively using small datasets. This work involves six categories, where four mango types are classified (Harum Manis, Langra, Dasheri and Sindhri), categories for other types of mangoes, and a non-mango category. Each category dataset comprises 100 images, and is split 70/30 between the training and testing set, respectively. This work was undertaken with a mobile-based application that can be used to distinguish various types of mangoes based on the proposed transfer learning method. The results obtained from the conducted experiment show that adopted transfer learning can achieve an accuracy of 95% for mango recognition. A preliminary user acceptance survey was also carried out to investigate the user’s requirements, the effectiveness of the proposed functionalities, and the ease of use of its proposed interfaces, with promising results.