Metals (Nov 2021)
Dissolution Behavior of Different Inclusions in High Al Steel Reacted with Refining Slags
Abstract
Al2O3, Al2O3·TiN, Al2O3·MgO, and CaO·2Al2O3 are four different types of inclusions in high Al steels. To improve the steel cleanness level, the effective removal of such inclusions during secondary refining is very important, so these inclusions should be removed effectively via inclusion dissolution in the slag. The dissolution behavior of Al2O3, Al2O3·TiN, Al2O3·MgO, and CaO·2Al2O3 in CaO-SiO2-Al2O3-MgO slags, as well as the steel-slag reaction, was investigated using laser scanning confocal microscopy (LSCM) and high-temperature furnace experiments, and thermodynamic calculations for the inclusion in steel were carried out by FactSage 7.1. The results showed that Al2O3·TiN was observed to be completely different from the other oxides. The composite oxides dissolved quickly in the slags, and the dissolution time of the inclusions increased as their melting point increased. SiO2 and B2O3 in the slag were almost completely reacted with [Al] in steel, so the slags without SiO2 showed a positive effect for avoiding the formation of Al2O3 system inclusions and promoting inclusions dissolution as compared with SiO2-rich slags. The steel-slag reaction was also found to influence the inclusion types in steel significantly. Because of the rapid absorption of different inclusions in the slag, it was found that the dissolution time of inclusions mainly depends on the diffusion in the molten slag.
Keywords