Journal of Applied Oral Science (Jan 2014)

Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites

  • Keiichi YOSHIDA,
  • Xiangfeng MENG

DOI
https://doi.org/10.1590/1678-775720130359
Journal volume & issue
Vol. 22, no. 1
pp. 44 – 51

Abstract

Read online

Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN) of dual-cured core build-up resin composites (DCBRCs) at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE]) were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2)at the top surface by irradiation for 20 seconds (20 s), 40 seconds (40 s), bonding agent plus 20 seconds (B+20 s), or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s). KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p0.05). In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05). Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity.

Keywords