Nuclear Engineering and Technology (Apr 2022)
Critical heat flux in a CANDU end shield – Influence of shielding ball diameter
Abstract
Experiments were performed to measure the critical heat flux (CHF) on a vertical surface abutting a coarse packed bed of spherical particles. This geometry is representative of a CANDU reactor calandria tubesheet facing the end shield cavity during the in-vessel retention (IVR) phase of a severe accident. Deionized light water was used as the working fluid. Low carbon steel shielding balls with diameters ranging from 6.4 to 12.7 mm were used, allowing for the development of an empirical correlation of CHF as a function of shielding ball diameter. Previously published data is used to develop a more comprehensive empirical correlation accounting for the impacts of both shielding ball diameter and heating surface height. Tests using borosilicate shielding balls demonstrated that the dependence of CHF on shielding ball thermal conductivity is insignificant. The deposition of iron oxide particles transported from shielding balls to the heating surface is verified to increase CHF non-trivially. The results presented in this paper improve the state of the knowledge base permitting quantitative prediction of CHF in the CANDU end shield, refining our ability to assess the feasibility of IVR. The findings clarify the mechanisms governing CHF in this scenario, permitting identification of potential future research directions.