Arabian Journal of Chemistry (Feb 2020)

Synthesis of eco-friendly porous g-C3N4/SiO2/SnO2 composite with excellent visible-light responsive photocatalysis

  • Li Peng,
  • Ren-rong Zheng,
  • Da-wei Feng,
  • Hui Yu,
  • Xiang-ting Dong

Journal volume & issue
Vol. 13, no. 2
pp. 4275 – 4285

Abstract

Read online

Forming eco-friendly heterojunction photocatalysts is excellent method to accelerate the separation rate of photogenerated charge carriers, which is attracting more and more attention. In this study, a novel and stable disordered porous g-C3N4/SiO2/SnO2 (DOP-CSiSn) heterojunction composites was fabricated by a sol-gel hard template method, and the optimal g-C3N4 doped ratio was adjusted in DOP-CSiSn. The DOP-CSiSn photocatalyst had the much larger specific surface area and disordered porous structure, which exhibited strong photocatalytic effect to degrade Rhodamine B (RhB), Methylene blue (MB) and Methyl orange (MO) under visible light. When the g-C3N4 doping content was 30 wt%, the highest photocatalytic activities were obtained, and the degradation rate of MB and MO were 99.73% and 95.58% after 50 min, respectively. Degradation rate of RhB was 95.10% after 90 min. Photocatalytic degradation rate of organic pollutants were still more than 90% after six time consecutive cycles, the composite had wonderful stability and potential value in environmental purification. Keywords: Disorder mesoporous SnO2 aerogel, G-C3N4, Hard template method, Photocatalytic, Visible-light