Stem Cells International (Jan 2021)

A Novel Cancer Stemness-Related Signature for Predicting Prognosis in Patients with Colon Adenocarcinoma

  • Wei Wang,
  • Congrong Xu,
  • Yan Ren,
  • Shiwei Wang,
  • Chunli Liao,
  • Xiaoyan Fu,
  • Haixia Hu

DOI
https://doi.org/10.1155/2021/7036059
Journal volume & issue
Vol. 2021

Abstract

Read online

Objective. To explore the cancer stemness features and develop a novel cancer stemness-related prognostic signature for colon adenocarcinoma (COAD). Methods. We downloaded the mRNA expression data and clinical data of COAD from TCGA database and GEO database. Stemness index, mRNAsi, was utilized to investigate cancer stemness features. Weighted gene coexpression network analysis (WGCNA) was used to identify cancer stemness-related genes. Univariate and multivariate Cox regression analyses were applied to construct a prognostic risk cancer stemness-related signature. We then performed internal and external validation. The relationship between cancer stemness and COAD immune microenvironment was investigated. Results. COAD patients with higher mRNAsi score or EREG-mRNAsi score have significant longer overall survival (OS). We identified 483 differently expressed genes (DEGs) between the high and low mRNAsi score groups. We developed a cancer stemness-related signature using fifteen genes (including RAB31, COL6A3, COL5A2, CCDC80, ADAM12, VGLL3, ECM2, POSTN, DPYSL3, PCDH7, CRISPLD2, COLEC12, NRP2, ISLR, and CCDC8) for prognosis prediction of COAD. Low-risk score was associated with significantly preferable OS in comparison with high-risk score, and the area under the ROC curve (AUC) for OS prediction was 0.705. The prognostic signature was an independent predictor for OS of COAD. Macrophages, mast cells, and T helper cells were the vital infiltration immune cells, and APC costimulation and type II IFN response were the vital immune pathways in COAD. Conclusions. We developed and validated a novel cancer stemness-related prognostic signature for COAD, which would contribute to understanding of molecular mechanism in COAD.