Veterinary Research (Dec 2022)
Influence of heat stress on intestinal integrity and the caecal microbiota during Enterococcus cecorum infection in broilers
Abstract
Abstract Enterococcus cecorum (EC) is one of the most relevant bacterial pathogens in modern broiler chicken production from an economic and animal welfare perspective. Although EC pathogenesis is generally well described, predisposing factors are still unknown. This study aimed to understand the effect of heat stress on the caecal microbiota, intestinal integrity, and EC pathogenesis. A total of 373 1-day-old commercial broiler chicks were randomly assigned to four groups: (1) noninoculated, thermoneutral conditions (TN); (2) noninoculated, heat stress conditions (HS); (3) EC-inoculated, thermoneutral conditions (TN + EC); and (4) EC-inoculated, heat stress conditions (HS + EC). Birds were monitored daily for clinical signs. Necropsy of 20 broilers per group was performed at 7, 14, 21, and 42 days post-hatch (dph). A trend towards enhanced and more pronounced clinical disease was observed in the EC-inoculated, heat-stressed group. EC detection rates in extraintestinal tissues via culture were higher in the HS + EC group (~19%) than in the TN + EC group (~11%). Significantly more birds were colonized by EC at 7 dph in the HS + EC group (100%) than in the TN + EC group (65%, p < 0.05). The caecal microbiota in the two EC-inoculated groups was significantly more diverse than that in the TN group (p < 0.05) at 14 dph, which may indicate an effect of EC infection. An influence of heat stress on mRNA expression of tight junction proteins in the caecum was detected at 7 dph, where all six investigated tight junction proteins were expressed at significantly lower levels in the heat stressed groups compared to the thermoneutral groups. These observations suggest that heat stress may predispose broilers to EC-associated disease and increase the severity thereof. Furthermore, heat stress may impair intestinal integrity and promote EC translocation.
Keywords