Applied Computational Intelligence and Soft Computing (Jan 2012)

Nonnegative Matrix Factorizations Performing Object Detection and Localization

  • G. Casalino,
  • N. Del Buono,
  • M. Minervini

DOI
https://doi.org/10.1155/2012/781987
Journal volume & issue
Vol. 2012

Abstract

Read online

We study the problem of detecting and localizing objects in still, gray-scale images making use of the part-based representation provided by nonnegative matrix factorizations. Nonnegative matrix factorization represents an emerging example of subspace methods, which is able to extract interpretable parts from a set of template image objects and then to additively use them for describing individual objects. In this paper, we present a prototype system based on some nonnegative factorization algorithms, which differ in the additional properties added to the nonnegative representation of data, in order to investigate if any additional constraint produces better results in general object detection via nonnegative matrix factorizations.