Scientific Reports (Feb 2023)

Accuracy and feasibility of a novel fine hand motor skill assessment using computer vision object tracking

  • Bokkyu Kim,
  • Christopher Neville

DOI
https://doi.org/10.1038/s41598-023-29091-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Abstract We developed a computer vision-based three-dimension (3D) motion capture system employing two action cameras to examine fine hand motor skill by tracking an object manipulated by a hand. This study aimed to examine the accuracy and feasibility of this approach for detecting changes in a fine hand motor skill. We conducted three distinct experiments to assess the system's accuracy and feasibility. We employed two high-resolution, high-frame-rate action cameras. We evaluated the accuracy of our system in calculating the 3D locations of moving object in various directions. We also examined the system's feasibility in identifying improvement in fine hand motor skill after practice in eleven non-disabled young adults. We utilized color-based object detection and tracking to estimate the object's 3D location, and then we computed the object's kinematics, representing the endpoint goal-directed arm reaching movement. Compared to ground truth measurements, the findings demonstrated that our system can adequately estimate the 3D locations of a moving object. We also showed that the system can be used to measure the endpoint kinematics of goal-directed arm reaching movements to detect changes in fine hand motor skill after practice. Future research is needed to confirm the system's reliability and validity in assessing fine hand motor skills in patient populations.