Neurobiology of Stress (Nov 2024)
Dopamine and D1 receptor in hippocampal dentate gyrus involved in chronic stress-induced alteration of spatial learning and memory in rats
Abstract
There is increasing evidence that chronic stress (CS), which occurs when the body is exposed to prolonged stressors, significantly impairs learning and memory. Dopamine (DA) plays a critical role in learning and memory in the hippocampus through the activation of D1-like receptors (D1R). However, the specific roles of DA and D1R in the hippocampal dentate gyrus (DG), particularly in CS-induced changes in spatial learning and memory, are not well understood. In this study, we established a CS rat model through the random application of various stressors. We assessed spatial learning and memory using the Morris water maze (MWM) and measured DA concentration and the amplitude of field excitatory postsynaptic potentials (fEPSP) in the DG during the MWM test in freely moving rats. We also examined the involvement of D1R in spatial learning and memory by microinjecting its antagonist (SCH23390) into the DG, and then analyzed the expressions of phosphorylated (p-) Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), and cAMP-response element binding protein (CREB) in the DG using Western blot. During the MWM test, compared with the control group, the escape latency was increased, and the percentage of distance in target quadrant and the number of platform crossings were decreased, in addition, the increase of fEPSP amplitude in the DG was significantly attenuated in CS group. In the control group, the DA concentration in the DG was significantly increased during the MWM test, and this response was enhanced in the CS group. Microinjection of SCH23390 into the DG significantly improved the spatial learning and memory impairments in CS rats, and reversed the inhibitory effect of CS on increase of fEPSP amplitude in the DG during the MWM test. Furthermore, SCH23390 partially reversed the inhibitory effects of CS on the expressions of p-CaMKII, p-PKA, and p-CREB in the DG. Our findings suggest that overactivation of the DA-D1R system in the hippocampal DG impairs spatial learning and memory and related synaptic plasticity in CS rats via downregulation of PKA-CREB signaling pathway.