JMIR Public Health and Surveillance (Feb 2023)

Artificial Intelligence in Community-Based Diabetic Retinopathy Telemedicine Screening in Urban China: Cost-effectiveness and Cost-Utility Analyses With Real-world Data

  • Senlin Lin,
  • Yingyan Ma,
  • Yi Xu,
  • Lina Lu,
  • Jiangnan He,
  • Jianfeng Zhu,
  • Yajun Peng,
  • Tao Yu,
  • Nathan Congdon,
  • Haidong Zou

DOI
https://doi.org/10.2196/41624
Journal volume & issue
Vol. 9
p. e41624

Abstract

Read online

BackgroundCommunity-based telemedicine screening for diabetic retinopathy (DR) has been highly recommended worldwide. However, evidence from low- and middle-income countries (LMICs) on the choice between artificial intelligence (AI)–based and manual grading–based telemedicine screening is inadequate for policy making. ObjectiveThe aim of this study was to test whether the AI model is more worthwhile than manual grading in community-based telemedicine screening for DR in the context of labor costs in urban China. MethodsWe conducted cost-effectiveness and cost-utility analyses by using decision-analytic Markov models with 30 one-year cycles from a societal perspective to compare the cost, effectiveness, and utility of 2 scenarios in telemedicine screening for DR: manual grading and an AI model. Sensitivity analyses were performed. Real-world data were obtained mainly from the Shanghai Digital Eye Disease Screening Program. The main outcomes were the incremental cost-effectiveness ratio (ICER) and the incremental cost-utility ratio (ICUR). The ICUR thresholds were set as 1 and 3 times the local gross domestic product per capita. ResultsThe total expected costs for a 65-year-old resident were US $3182.50 and US $3265.40, while the total expected years without blindness were 9.80 years and 9.83 years, and the utilities were 6.748 quality-adjusted life years (QALYs) and 6.753 QALYs in the AI model and manual grading, respectively. The ICER for the AI-assisted model was US $2553.39 per year without blindness, and the ICUR was US $15,216.96 per QALY, which indicated that AI-assisted model was not cost-effective. The sensitivity analysis suggested that if there is an increase in compliance with referrals after the adoption of AI by 7.5%, an increase in on-site screening costs in manual grading by 50%, or a decrease in on-site screening costs in the AI model by 50%, then the AI model could be the dominant strategy. ConclusionsOur study may provide a reference for policy making in planning community-based telemedicine screening for DR in LMICs. Our findings indicate that unless the referral compliance of patients with suspected DR increases, the adoption of the AI model may not improve the value of telemedicine screening compared to that of manual grading in LMICs. The main reason is that in the context of the low labor costs in LMICs, the direct health care costs saved by replacing manual grading with AI are less, and the screening effectiveness (QALYs and years without blindness) decreases. Our study suggests that the magnitude of the value generated by this technology replacement depends primarily on 2 aspects. The first is the extent of direct health care costs reduced by AI, and the second is the change in health care service utilization caused by AI. Therefore, our research can also provide analytical ideas for other health care sectors in their decision to use AI.