Journal of Medical Internet Research (Mar 2022)

Use of Mobile and Wearable Artificial Intelligence in Child and Adolescent Psychiatry: Scoping Review

  • Victoria Welch,
  • Tom Joshua Wy,
  • Anna Ligezka,
  • Leslie C Hassett,
  • Paul E Croarkin,
  • Arjun P Athreya,
  • Magdalena Romanowicz

DOI
https://doi.org/10.2196/33560
Journal volume & issue
Vol. 24, no. 3
p. e33560

Abstract

Read online

BackgroundMental health disorders are a leading cause of medical disabilities across an individual’s lifespan. This burden is particularly substantial in children and adolescents because of challenges in diagnosis and the lack of precision medicine approaches. However, the widespread adoption of wearable devices (eg, smart watches) that are conducive for artificial intelligence applications to remotely diagnose and manage psychiatric disorders in children and adolescents is promising. ObjectiveThis study aims to conduct a scoping review to study, characterize, and identify areas of innovations with wearable devices that can augment current in-person physician assessments to individualize diagnosis and management of psychiatric disorders in child and adolescent psychiatry. MethodsThis scoping review used information from the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of several databases from 2011 to June 25, 2021, limited to the English language and excluding animal studies, was conducted. The databases included Ovid MEDLINE and Epub ahead of print, in-process and other nonindexed citations, and daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; Web of Science; and Scopus. ResultsThe initial search yielded 344 articles, from which 19 (5.5%) articles were left on the final source list for this scoping review. Articles were divided into three main groups as follows: studies with the main focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, and internalizing disorders such as anxiety disorders. Most of the studies used either cardio-fitness chest straps with electrocardiogram sensors or wrist-worn biosensors, such as watches by Fitbit. Both allowed passive data collection of the physiological signals. ConclusionsOur scoping review found a large heterogeneity of methods and findings in artificial intelligence studies in child psychiatry. Overall, the largest gap identified in this scoping review is the lack of randomized controlled trials, as most studies available were pilot studies and feasibility trials.