Physical Review Research (Dec 2019)

Using the fluctuation-dissipation theorem for nonconservative forces

  • Kiryl Asheichyk,
  • Matthias Krüger

DOI
https://doi.org/10.1103/PhysRevResearch.1.033151
Journal volume & issue
Vol. 1, no. 3
p. 033151

Abstract

Read online Read online

An equilibrium system which is perturbed by an external potential relaxes to a new equilibrium state, a process obeying the fluctuation-dissipation theorem. In contrast, perturbing by nonconservative forces yields a nonequilibrium steady state, and the fluctuation-dissipation theorem can in general not be applied. Here we exploit a freedom inherent to linear response theory: Force fields which perform work that does not couple statistically to the considered observable can be added without changing the response. Using this freedom, we demonstrate that the fluctuation-dissipation theorem can be applied for certain nonconservative forces. We discuss the case of a nonconservative force field linear in particle coordinates, where the mentioned freedom can be formulated in terms of symmetries. In particular, for the case of shear, this yields a response formula, which we find advantageous over the known Green-Kubo relation in terms of statistical accuracy.