BMC Biology (Sep 2024)
Drug-target interaction prediction with collaborative contrastive learning and adaptive self-paced sampling strategy
Abstract
Abstract Background Drug-target interaction (DTI) prediction plays a pivotal role in drug discovery and drug repositioning, enabling the identification of potential drug candidates. However, most previous approaches often do not fully utilize the complementary relationships among multiple biological networks, which limits their ability to learn more consistent representations. Additionally, the selection strategy of negative samples significantly affects the performance of contrastive learning methods. Results In this study, we propose CCL-ASPS, a novel deep learning model that incorporates Collaborative Contrastive Learning (CCL) and Adaptive Self-Paced Sampling strategy (ASPS) for drug-target interaction prediction. CCL-ASPS leverages multiple networks to learn the fused embeddings of drugs and targets, ensuring their consistent representations from individual networks. Furthermore, ASPS dynamically selects more informative negative sample pairs for contrastive learning. Experiment results on the established dataset demonstrate that CCL-ASPS achieves significant improvements compared to current state-of-the-art methods. Moreover, ablation experiments confirm the contributions of the proposed CCL and ASPS strategies. Conclusions By integrating Collaborative Contrastive Learning and Adaptive Self-Paced Sampling, the proposed CCL-ASPS effectively addresses the limitations of previous methods. This study demonstrates that CCL-ASPS achieves notable improvements in DTI predictive performance compared to current state-of-the-art approaches. The case study and cold start experiments further illustrate the capability of CCL-ASPS to effectively predict previously unknown DTI, potentially facilitating the identification of new drug-target interactions.
Keywords