Remote Sensing (Jun 2023)

Elimination of Thermal Effects from Limited Structural Displacements Based on Remote Sensing by Machine Learning Techniques

  • Bahareh Behkamal,
  • Alireza Entezami,
  • Carlo De Michele,
  • Ali Nadir Arslan

DOI
https://doi.org/10.3390/rs15123095
Journal volume & issue
Vol. 15, no. 12
p. 3095

Abstract

Read online

Confounding variability caused by environmental and/or operational conditions is a big challenge in the structural health monitoring (SHM) of large-scale civil structures. The elimination of such variability is of paramount importance in avoiding economic and human losses. Machine learning-aided data normalization provides a good solution to this challenge. Despite proper studies on data normalization using structural responses/features acquired from contact-based sensors, this issue has not been explored properly via new features, such as displacement responses from remote sensing products, including synthetic aperture radar (SAR) images. Hence, the main aim of this work was to eliminate environmental variability, particularly thermal effects, from different and limited structural displacements retrieved from a few SAR images related to long-term health monitoring programs of long-span bridges. For this purpose, we conducted a comprehensive comparative study to investigate two supervised and two unsupervised data normalization algorithms. The supervised algorithms were based on Gaussian process regression (GPR) and support vector regression (SVR), for which temperature records acquired from contact temperature sensors and structural displacements retrieved from spaceborne remote sensors produce univariate predictor (input) and response (output) data for the regression problem. For the unsupervised algorithms, this paper employed principal component analysis (PCA) and proposed a deep autoencoder (DAE), both of which conform with unsupervised reconstruction-based data normalization. In contrast to the GPR- and SVR-based data normalization algorithms, both the PCA and DAE methods only consider the SAR-based displacement (output) data without any requirement of the environmental and/or operational (input) data. Limited displacement sets of long-span bridges from a few SAR images of Sentinel-1A, related to long-term SHM programs, were considered to assess the aforementioned techniques. Results demonstrate that the proposed DAE-aided data normalization is the best approach to remove thermal effects and other unmeasured environmental and/or operational variability.

Keywords