AIMS Mathematics (May 2023)

Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection

  • Yanlin Li,
  • Aydin Gezer,
  • Erkan Karakaş

DOI
https://doi.org/10.3934/math.2023886
Journal volume & issue
Vol. 8, no. 8
pp. 17335 – 17353

Abstract

Read online

Let $ (M, g) $ be an $ n $-dimensional (pseudo-)Riemannian manifold and $ TM $ be its tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $. First, we define a Ricci quarter-symmetric metric connection $ \overline{\nabla } $ on the tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $. Second, we compute all forms of the curvature tensors of $ \overline{\nabla } $ and study their properties. We also define the mean connection of $ \overline{\nabla } $. Ricci and gradient Ricci solitons are important topics studied extensively lately. Necessary and sufficient conditions for the tangent bundle $ TM $ to become a Ricci soliton and a gradient Ricci soliton concerning $ \overline{\nabla } $ are presented. Finally, we search conditions for the tangent bundle $ TM $ to be locally conformally flat with respect to $ \overline{\nabla } $.

Keywords