AIP Advances (Dec 2022)

Deep learning method for the super-resolution reconstruction of small-scale motions in large-eddy simulation

  • Qingyi Zhao,
  • Guodong Jin,
  • Zhideng Zhou

DOI
https://doi.org/10.1063/5.0127808
Journal volume & issue
Vol. 12, no. 12
pp. 125304 – 125304-9

Abstract

Read online

A super-resolution reconstruction model for the subgrid scale (SGS) turbulent flow field in large-eddy simulation (LES) is proposed, and it is called the meta-learning deep convolutional neural network (MLDCNN). Direct numerical simulation (DNS) data of isotropic turbulence are used as the dataset of the model. The MLDCNN is an unsupervised learning model, which only includes high-resolution DNS data without manually inputting preprocessed low-resolution data. In this model, the training process adopts the meta-learning method. First, in the a priori test, the SGS turbulent flow motions in the filtered DNS (FDNS) flow field are reconstructed, and the energy spectrum and probability density function of the velocity gradient of the DNS flow field are reconstructed with high accuracy. Then, in the a posteriori test, the super-resolution reconstruction of the LES flow field is carried out. The difficulty of LES flow field reconstruction is that it contains filtering loss and subgrid model errors relative to the DNS flow field. The super-resolution reconstruction of the LES flow field achieves good results through this unsupervised learning model. The proposed model makes a good prediction of small-scale motions in the LES flow field. This work improves the prediction accuracy of LES, which is crucial for the phenomena dominated by small-scale motions, such as relative motions of particles suspended in turbulent flows.