Nature Communications (Dec 2022)
Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
Abstract
Existing optogenetic silencing methods affect membrane potential, biochemistry or protein integrity. Here, the authors demonstrate an approach for silencing synaptic transmission that combines fast activation and reversibility, by using nondisruptive, reversible, light-evoked clustering of synaptic vesicles, which they validate in Caenorhabditis elegans, zebrafish, and murine cell culture.