World Electric Vehicle Journal (May 2024)
Efficiency Analysis of Hybrid Extreme Regenerative with Supercapacitor Battery and Harvesting Vibration Absorber System for Electric Vehicles Driven by Permanent Magnet Synchronous Motor 30 kW
Abstract
This research presents an approach to the hybrid energy harvesting paradigm (HEHP) based on suspended energy harvest. It uses a harvesting vibration absorber (HVA) with an SC/NMC-lithium battery hybrid energy storage paradigm (SCB-HESP) equipped regenerative braking system (SCB-HESP-RBS) for electric vehicles 2 tons in gross weight (MEVs) driven by a 30 kW permanent magnet synchronous motor (PMSM). During regenerative braking, the ANN mechanism controls the RBS to adjust the switching waveform of the three-phase power inverter, and the braking energy transfers to the energy storage device. Additionally, a supercapacitor (SC) equipped with HVA can absorb energy from vehicle vibrations and convert it into electrical energy. The energy-harvesting efficiency of MEV based on SCB-HESP-RBS using HVA suspended energy harvesting enhances the efficiency maximum to 50.58% and 15.36% in comparison to MEV with only-HVA and SCB-HESP-RBS, respectively. Further, the MEV with SCB-HESP-RBS using HVA has a driving distance of up to 247.34 km (22.5 cycles) when compared with SCB-HESP-RBS (214.40 km, 19.5 cycles) and only-HVA (164.25 km, 15 cycles).
Keywords