Energy and AI (Dec 2024)

Insight of low flammability limit on sustainable aviation fuel blend and prediction by ANN model

  • Ziyu Liu,
  • Xiaoyi Yang

Journal volume & issue
Vol. 18
p. 100423

Abstract

Read online

Sustainable aviation fuel (SAF) blend has been confirmed to benefit for greenhouse gases reduction, and thus the property of blend fuel should be understanded the detail to support the utilization in aircraft. Low flammability limit (LFL) is a key property of jet fuel which should be sufficiently flammable to burn in combustor of aeroengine and meanwhile should be non-flammable for safety storage in fuel tank of aircraft. LFL of fuel could be influenced by integrating effects including molecule structure, intramolecular chemical bond energy and binding energy of molecule to molecule. Three types of theoretical models, based on different individual view including LFL of every pure hydrocarbon, stoichiometric concentration, and combustion enthalpy, present unsatisfactory simulation results, which can be deduced without integrating all potential influence factors together. The artificial neural network (ANN) approaches have been involved to bridge the relationship of the complex compositions in jet fuels with LFL. For providing adequate and available composition input, the boundary of fuel compositions has been extracted based on constrains of boiling point, flash point and freeze point coupling with statistic petroleum-based jet fuels. By clustering analysis, 43 critical classes of compositions, extracted as surrogate hydrocarbons based on with similar LFL within 1 % deviation, have been deployed as input matrix. ANN-LFL model, trained by only drop-in fuel with feature of Sigmoid function as an activation function, can distinguish drop-in fuel with non-drop-in fuel. ANN LFL model can predict LFL of drop-in fuel with 0.988 accuracy. The predict output value of non-drop-in fuel could present obvious deviation with traditional jet fuel. The optimization methodologies of ANN-LFL model could be improved the understanding of LFL and extend ANN in SAF utilization.

Keywords