Journal of Nanobiotechnology (Jan 2024)

Assembling Au8 clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor

  • Rui Zhang,
  • Mengchao Jia,
  • Hongying Lv,
  • Mengxuan Li,
  • Guanwen Ding,
  • Ge Cheng,
  • Juan Li

DOI
https://doi.org/10.1186/s12951-023-02279-2
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Radiotherapy is one of the mainstays of cancer therapy and has been used for treating 65–75% of patients with solid tumors. However, radiotherapy of tumors has two limitations: high-dose X-rays damage adjacent normal tissue and tumor metastases cannot be prevented. Results Therefore, to overcome the two limitations of radiotherapy, a multifunctional core–shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer were fabricated by assembling Au8NCs on the surface of a bifunctional nanoimmunomodulator R837/BMS nanocore using nanoprecipitation followed by electrostatic assembly. Formed R837/BMS@Au8 NP composed of R837, BMS-1, and Au8 clusters. Au8NC can enhance X-ray absorption at the tumor site to reduce X-ray dose and releases a large number of tumor-associated antigens under X-ray irradiation. With the help of immune adjuvant R837, dendritic cells can effectively process and present tumor-associated antigens to activate effector T cells, meanwhile, a small-molecule PD-L1 inhibitor BMS-1 can block PD-1/PD-L1 pathway to reactivate cytotoxic T lymphocyte, resulting in a strong systemic antitumor immune response that is beneficial for limiting tumor metastasis. According to in vivo and in vitro experiments, radioimmunotherapy based on R837/BMS@Au8 nanoparticles can increase calreticulin expression on of cancer cells, reactive oxygen species generation, and DNA breakage and decrease colony formation. The results revealed that distant tumors were 78.2% inhibited depending on radioimmunotherapy of primary tumors. Therefore, the use of a novel radiosensitizer R837/BMS@Au8 NPs realizes low-dose radiotherapy combined with immunotherapy against advanced cancer. Conclusion In conclusion, the multifunctional core–shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer effectively limiting tumor metastasis and decrease X-ray dose to 1 Gy, providing an efective strategy for the construction of nanosystems with radiosensitizing function.

Keywords