Buildings (Jan 2022)

Data-Driven Compressive Strength Prediction of Fly Ash Concrete Using Ensemble Learner Algorithms

  • Mohammad Sadegh Barkhordari,
  • Danial Jahed Armaghani,
  • Ahmed Salih Mohammed,
  • Dmitrii Vladimirovich Ulrikh

DOI
https://doi.org/10.3390/buildings12020132
Journal volume & issue
Vol. 12, no. 2
p. 132

Abstract

Read online

Concrete is one of the most popular materials for building all types of structures, and it has a wide range of applications in the construction industry. Cement production and use have a significant environmental impact due to the emission of different gases. The use of fly ash concrete (FAC) is crucial in eliminating this defect. However, varied features of cementitious composites exist, and understanding their mechanical characteristics is critical for safety. On the other hand, for forecasting the mechanical characteristics of concrete, machine learning approaches are extensively employed algorithms. The goal of this work is to compare ensemble deep neural network models, i.e., the super learner algorithm, simple averaging, weighted averaging, integrated stacking, as well as separate stacking ensemble models, and super learner models, in order to develop an accurate approach for estimating the compressive strength of FAC and reducing the high variance of the predictive models. Separate stacking with the random forest meta-learner received the most accurate predictions (97.6%) with the highest coefficient of determination and the lowest mean square error and variance.

Keywords