International Journal of Cell Biology (Jan 2012)

Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival

  • Luke R. K. Hughson,
  • Vincent I. Poon,
  • Jaeline E. Spowart,
  • Julian J. Lum

DOI
https://doi.org/10.1155/2012/872091
Journal volume & issue
Vol. 2012

Abstract

Read online

Accumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, including mitophagy, nucleophagy, and ubiquitin-mediated autophagy, counteract apoptotic signals by removing damaged cellular structures and by reprogramming cellular energy metabolism to cope with therapeutic stress. As a result, the efficacies of numerous current cancer therapies may be improved by combining them with adjuvant treatments that exploit or disrupt key metabolic processes induced by selective forms of autophagy. Targeting these metabolic irregularities represents a promising approach to improve clinical responsiveness to cancer treatments given the inherently elevated metabolic demands of many tumor types. To what extent anticancer treatments promote selective forms of autophagy and the degree to which they influence metabolism are currently under intense scrutiny. Understanding how the activation of selective forms of autophagy influences cellular metabolism and survival provides an opportunity to target metabolic irregularities induced by these pathways as a means of augmenting current approaches for treating cancer.