IEEE Access (Jan 2024)

A Comprehensive Review of Renewables and Electric Vehicles Hosting Capacity in Active Distribution Networks

  • Zenhom M. Zenhom,
  • Shady H. E. Abdel Aleem,
  • Ahmed F. Zobaa,
  • Tarek A. Boghdady

DOI
https://doi.org/10.1109/ACCESS.2023.3349235
Journal volume & issue
Vol. 12
pp. 3672 – 3699

Abstract

Read online

The excessive integration of renewable distributed generation (RDG) and electric vehicles (EVs) could be considered the two most problematic elements representing the greatest threat to the distribution network (DN) technical operation. In order to avoid going beyond technical limitations, the term hosting capacity (HC) was proposed to define the highest permitted amount of distributed generation (DG) or EVs that can be integrated safely into the DN. The connection of RDGs was first brought to the attention of researchers and DN operators since it accounts for the most notable portion of these technical issues. Hence, the phrase ‘DG-HC’ was initially proposed and evolved significantly over the last few years. Currently, EV integration in most DNs worldwide is still low, but given the worldwide support for clean transportation options, expectations are raised for a significant increase. As a result, it is anticipated that over the next years, the effect of EV integration on the DN will be highly noticeable, requiring greater attention from researchers and DN operators to define the accepted limits of EV penetration levels, ‘EV-HC,’ which is expected to pass along the same line of DG-HC. This article provides an in-depth review of both DG-HC and EV-HC. It first analyses how the DG-HC research has grown over the years and then studies the published EV-HC papers, illustrating to what extent there is a similarity between them and, finally, employs these analyses to expect future development in the EV-HC research area. This article includes the different uses of the term HC, the most common performance indices of DG-HC, the various methods for assessing DG-HC, the different techniques for DG-HC enhancement, the effects of integrating EVs on the DG-HC, and finally, calculating and enhancing methods for EV-HC.

Keywords