Applied Sciences (Sep 2022)

Experimental and Numerical Studies on Fatigue Characteristics of CFRP Shaft Tube

  • Guoping Ding,
  • Xiaoyu Yan,
  • Xiaoling Gao,
  • Jieliang Xiao

DOI
https://doi.org/10.3390/app12188933
Journal volume & issue
Vol. 12, no. 18
p. 8933

Abstract

Read online

Carbon Fiber Reinforced Plastic (CFRP) shaft tube structure is widely applied in different fields, including aerospace, automotive, and wind power. Since CFRP shaft tube is often subjected to bending fatigue loads, it is of great significance to research its bending fatigue characteristics. Because of its unique advantages, such as a smaller size, lighter weight, and the outstanding ability to form a sensor network, the Fiber Bragg Grating (FBG) sensor is very applicable for health monitoring research of composite material structures. Taking the CFRP shaft tube under bending load as the research object, based on the theory of composite material mechanics and applying the research idea of combining simulation analysis and experiment, the fatigue life, residual stiffness, and fatigue damage evolution of CFRP tubes under three-point bending fatigue loading were studied. Moreover, the fatigue characteristics of CFRP tubes under different fatigue loading were analyzed. At the same time, the ultrasonic phased array was used to obtain the fatigue damage evolution rule by scanning and analyzing the damage to the CFRP shaft tube after different fatigue loading times. Through the application of the FBG sensors, the whole process of fatigue evolution of the CFRP shaft tube was fully monitored.

Keywords