Heliyon (Apr 2024)
Bio inspired heuristic computing scheme for the human liver nonlinear model
Abstract
In this research, a bio-inspired heuristic computing approach has been developed to solve the nonlinear behavior of the human liver, which is categorized into the liver and blood. The solutions of the human liver model are presented by using the stochastic computation procedure based on the artificial neural network (ANN) along with the optimization of genetic algorithm (GA) and interior-point (IP). A fitness function is designed through the differential form of the nonlinear human liver model and then optimized by using the hybrid competency of GAIP scheme. The correctness and exactness of the proposed approach are observed through the overlapping of the obtained (GAIP) and reference (Adams scheme) solutions, while the calculated absolute error values in good order enhance the worth of the proposed solver. The log-sigmoid transfer function together with ten numbers of neurons is executed to perform the solutions of the human liver nonlinear model. Furthermore, the statistical approaches have been applied in order to observe the reliability of the designed approach for solving the nonlinear human liver model.