Materials (Apr 2021)

Dynamic Behavior of a Precast and Partial Steel Joint under Various Shear Span-to-Depth Ratios

  • Guoxi Fan,
  • Jing Yang,
  • Ye Wang,
  • Qiyi Zhang,
  • Jing Jia,
  • Wanpeng Cheng

DOI
https://doi.org/10.3390/ma14092162
Journal volume & issue
Vol. 14, no. 9
p. 2162

Abstract

Read online

The dynamic behavior of a PPSRC beam–column joint is related to constraint effect, strength deterioration and strain rate effect. Then, it can be assessed by bearing capacity, stiffness degradation, displacement ductility and energy consumption. The results show that the increased strain rate causes growth in ring stiffness, bearing capacity and energy consumption of PPSRC beam–column joints. However, the influence of shear span-to-depth ratio on dynamic mechanical properties of PPSRC beam–column joints is more obvious than that of strain rate. Regardless of strain rate, the bearing capacity, initial stiffness, ring stiffness and energy consumption of PPSRC beam–column joints decrease as the shear span-to-depth ratio increases. Moreover, the ring stiffness under reverse direction is smaller than that the under forward direction at each displacement level. However, the stiffness degradation under a lower shear span-to-depth ratio is more obvious than that under a higher shear span-to-depth ratio. Moreover, the displacement ductility with a higher shear span-to-depth ratio is better than that with a lower shear span-to-depth ratio. Finally, the mechanical properties of PPSRC beam–column joints are affected by the extension length of partial steel plate, and the reasonable extension length of the partial steel plate in the column is affected by the shear span-to-depth ratio.

Keywords