Journal of Neuroinflammation (Aug 2019)

An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain

  • Junjun Ni,
  • Zhou Wu,
  • Jie Meng,
  • Takashi Saito,
  • Takaomi C. Saido,
  • Hong Qing,
  • Hiroshi Nakanishi

DOI
https://doi.org/10.1186/s12974-019-1562-9
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Disturbances in clock genes affect almost all patients with Alzheimer’s disease (AD), as evidenced by their altered sleep/wake cycle, thermoregulation, and exacerbation of cognitive impairment. As microglia-mediated neuroinflammation proved to be a driver of AD rather than a result of the disease, in this study, we evaluated the relationship between clock gene disturbance and neuroinflammation in microglia and their contribution to the onset of AD. Methods In this study, the expression of clock genes and inflammatory-related genes was examined in MACS microglia isolated from 2-month-old amyloid precursor protein knock-in (APP-KI) and wild-type (WT) mice using cap analysis gene expression (CAGE) deep sequencing and RT-PCR. The effects of clock gene disturbance on neuroinflammation and relevant memory changes were examined in 2-month-old APP-KI and WT mice after injection with SR9009 (a synthetic agonist for REV-ERB). The microglia morphology was studied by staining, neuroinflammation was examined by Western blotting, and cognitive changes were examined by Y-maze and novel object recognition tests. Results CLOCK/BMAL1-driven transcriptional negative feedback loops were impaired in the microglia from 2-month-old APP-KI mice. Pro-inflammatory genes in microglia isolated from APP-KI mice were significantly higher than those isolated from WT mice at Zeitgeber time 14. The expression of pro-inflammatory genes was positively associated with NF-κB activation and negatively associated with the BMAL1 expression. SR9009 induced the activation of microglia, the increased expression of pro-inflammatory genes, and cognitive decline in 2-month-old APP-KI mice. Conclusion Clock gene disturbance in microglia is involved in the early onset of AD through the induction of chronic neuroinflammation, which may be a new target for preventing or slowing AD.

Keywords