Sensors (Mar 2009)

Electromechanical Characteristic Analysis of Passive Matrix Addressing for Grating Light Modulator

  • Shanglian Huang,
  • Zhu Jin,
  • Zhihai Zhang,
  • Zhiyu Wen

DOI
https://doi.org/10.3390/s90302162
Journal volume & issue
Vol. 9, no. 3
pp. 2162 – 2175

Abstract

Read online

AGrating Light Modulator (GLM) based on Micro-Electro-Mechanical Systems (MEMS) is applied in projection display. The operating principle of the GLM is introduced in this paper. The electromechanical characteristic of the passive matrix addressing GLM is studied. It was found that if the spring constant is larger, both the response frequency and the driving voltage are larger. Theoretical analysis shows that the operating voltage and the pull-in voltage of the GLM are 8.16 and 8.74 V, respectively. When an all-selected pixel in a m×n array is actuated by a voltage V0, the voltages of the half-selected pixel in row and column are V0(m-1)/(m+n-1) and V0(n-1)/(m+n-1), respectively, and the voltage of the non-selected pixel is V0/(m+n-1). Finally, the experimental results indicate that the operating voltage and the pull-in voltage are 7.8 and 8.5V respectively, and the response frequency of the GLM is about 7 kHz. The crosstalk in a 16×16 GLM array is validated by the experiment. These studies provide a theoretical basis for improving the GLM driver.

Keywords