Energies (Oct 2023)
Biocatalyzed Transesterification of Waste Cooking Oil for Biodiesel Production Using Lipase from the Amazonian Fungus <i>Endomelanconiopsis endophytica</i>
Abstract
The demand for biodiesel worldwide is skyrocketing as the need to replace fossil diesel with renewable energy sources becomes increasingly pressing. In this context, biocatalysis is emerging as an environmentally friendly and highly efficient alternative to chemical catalysis. When combined with the utilization of waste materials, it has the potential to make the process of biodiesel production sustainable. In the study, the potential of an extract rich in lipase produced by an Amazonian endophytic fungus as a biocatalyst in the transesterification of waste cooking oil for biodiesel production has been systematically investigated. The fungus Endomelanconiopsis endophytica exhibited an enzyme production of 11,262 U/mL after 120 h of cultivation. The lipolytic extract demonstrated its highest catalytic activity at 40 °C and a pH of 5.5. Using soybean oil and frying residue as raw materials, biodiesel was produced through biocatalytic transesterification, and yields of 91% and 89% (wt.), respectively, were achieved. By evaluating the process parameters, a maximum biodiesel yield of 90% was achieved using ethanol at a ratio of 3:1 ratio within 120 min. The experimental results demonstrate the feasibility and sustainability of applying a fungal enzymatic extract as a biocatalyst in the production of ethyl esters using waste cooking oil as a raw material.
Keywords