Horticulturae (Oct 2021)
Impact of <i>Trichoderma asperellum</i> on Chilling and Drought Stress in Tomato (<i>Solanum lycopersicum</i>)
Abstract
The acceleration of climate change is necessitating the adoption of shifts in farming practices and technology to ensure the sustainability of agricultural production and food security. Because abiotic stresses such as drought and chilling represent major constraints on agricultural productivity worldwide, in this study, the mitigation of such stresses by the fungus Trichoderma asperellum HK703 was evaluated. The fungus was grown on whole grain oats, kaolin and vermiculite for 5 days and then the formulation was mixed with the potting soil to colonize the roots of the plants. The effect of the bioinoculant on tomato under drought or chilling was analyzed in tomato (Solanum lycopersicum) plants. Leaf, stem and root succulence, electrolyte leakage, the relative growth rate of plant height, stem thickness and leaf area, as well new leaf emergence and chlorophyll content were determined. The results showed that drought or chilling increased electrolyte leakage and reduced plant growth and development traits and chlorophyll (a,b) content. However, inoculation with T. asperellum eliminated or reduced most of the negative impacts of drought compared to the non-stressed plants, with the exception of chlorophyll b content. Furthermore, inoculation with T. asperellum improved some of the evaluated features in chilling stressed plants but had no effect on plant height or chlorophyll (a,b) content. The results of this study indicate that T. asperellum was more effective in alleviating drought than chilling stress in tomato plants.
Keywords