Scientific Reports (Nov 2023)

Global perspective of environmental distribution and diversity of Perkinsea (Alveolata) explored by a meta-analysis of eDNA surveys

  • Sebastian Metz,
  • Sarah Itoïz,
  • Aleix Obiol,
  • Evelyne Derelle,
  • Ramon Massana,
  • Cédric Berney,
  • Colomban de Vargas,
  • Philippe Soudant,
  • Adam Monier,
  • Aurélie Chambouvet

DOI
https://doi.org/10.1038/s41598-023-47378-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Perkinsea constitutes a lineage within the Alveolata eukaryotic superphylum, mainly composed of parasitic organisms. Some described species represent significant ecological and economic threats due to their invasive ability and pathogenicity, which can lead to mortality events. However, the genetic diversity of these described species is just the tip of the iceberg. Environmental surveys targeting this lineage are still scarce and mainly limited to the Northern Hemisphere. Here, we aim to conduct an in depth exploration of the Perkinsea group, uncovering the diversity across a variety of environments, including those beyond freshwater and marine ecosystems. We seek to identify and describe putative novel organisms based on their genetic signatures. In this study, we conducted an extensive analysis of a metabarcoding dataset, focusing on the V4 region of the 18S rRNA gene (the EukBank dataset), to investigate the diversity, distribution and environmental preferences of the Perkinsea. Our results reveal a remarkable diversity within the Perkinsea, with 1568 Amplicon Sequence Variants (ASVs) identified across thousands of environmental samples. Surprisingly, we showed a substantial diversity of Perkinsea within soil samples (269 ASVs), challenging the previous assumption that this group is confined to marine and freshwater environments. In addition, we revealed that a notable proportion of Perkinsea ASVs (428 ASVs) could correspond to putative new organisms, encompassing the well-established taxonomic group Perkinsidae. Finally, our study shed light on previously unveiled taxonomic groups, including the Xcellidae, and revealed their environmental distribution. These findings demonstrate that Perkinsea exhibits far greater diversity than previously detected and surprisingly extends beyond marine and freshwater environments. The meta-analysis conducted in this study has unveiled the existence of previously unknown clusters within the Perkinsea lineage, solely identified based on their genetic signatures. Considering the ecological and economic importance of described Perkinsea species, these results suggest that Perkinsea may play a significant, yet previously unrecognized, role across a wide range of environments, spanning from soil environments to the abyssal zone of the open ocean with important implications for ecosystem functioning.