Journal of Materials Research and Technology (Nov 2024)

Microstructure evolution and properties of semi-solid Al80Mg5Li5Zn5Cu5 light weight high entropy alloy prepared by SIMA

  • Yong Hu,
  • Yuanyuan Liu

Journal volume & issue
Vol. 33
pp. 965 – 974

Abstract

Read online

The semi-solid Al80Mg5Li5Zn5Cu5 light weight high entropy alloys were prepared by strain induced melting activation method (SIMA), and the microstructure evolution, mechanical properties and corrosion resistance of semi-solid Al80Mg5Li5Zn5Cu5 light weight high entropy alloys were investigated. The results indicate that the ideal globular or near-globular microstructures with an average grain size of 29.1 μm and a shape factor of 0.86 can be obtained when the Al80Mg5Li5Zn5Cu5 light weight high entropy alloys with 20% deformation held at 500 °C for 15 min. The coarsening coefficient is 35.8 μm3/s when the temperature is 500 °C, which is lower than the traditional single major element alloys due to the sluggish diffusion effect of high entropy alloys. The compression strength of semi-solid Al80Mg5Li5Zn5Cu5 light weight high entropy alloys is 558.4 MPa, which is 11% higher than that of as-cast state. The corrosion resistance of semi-solid Al80Mg5Li5Zn5Cu5 light weight high entropy alloys is also significantly improved.

Keywords