Pharmaceutics (Nov 2022)

Ganglioside GM3-Functionalized Reconstituted High-Density Lipoprotein (GM3-rHDL) as a Novel Nanocarrier Enhances Antiatherosclerotic Efficacy of Statins in apoE<sup>−/−</sup> C57BL/6 Mice

  • Bo Wei,
  • Yuanfang Li,
  • Meiying Ao,
  • Wenxiang Shao,
  • Kun Wang,
  • Tong Rong,
  • Yun Zhou,
  • Yong Chen

DOI
https://doi.org/10.3390/pharmaceutics14112534
Journal volume & issue
Vol. 14, no. 11
p. 2534

Abstract

Read online

Previously, we found that exogenous ganglioside GM3 had an antiatherosclerotic efficacy and that its antiatherosclerotic efficacy could be enhanced by reconstituted high-density lipoprotein (rHDL). In this study, we hypothesized that GM3-functionalized rHDL (i.e., GM3-rHDL) as a nanocarrier can promote the efficacy of traditional antiatherosclerotic drugs (e.g., statins). To test this hypothesis, lovastatin (LT) was used as a representative of statins, and LT-loaded GM3-rHDL nanoparticle (LT-GM3-rHDL or LT@GM3-rHDL; a mean size of ~142 nm) and multiple controls (e.g., GM3-rHDL without LT, LT-loaded rHDL or LT-rHDL, and other nanoparticles) were prepared. By using two different microsphere-based methods, the presences of apolipoprotein A-I (apoA-I) and/or GM3 in nanoparticles and the apoA-I-mediated macrophage-targeting ability of apoA-I/rHDL-containing nanoparticles were verified in vitro. Moreover, LT-GM3-rHDL nanoparticle had a slowly sustained LT release in vitro and the strongest inhibitory effect on the foam cell formation of macrophages (a key event of atherogenesis). After single administration of rHDL-based nanoparticles, a higher LT concentration was detected shortly in the atherosclerotic plaques of apoE−/− mice than non-rHDL-based nanoparticles, suggesting the in vivo plaque-targeting ability of apoA-I/rHDL-containing nanoparticles. Finally, among all nanoparticles LT-GM3-rHDL induced the largest decreases in the contents of blood lipids and in the areas of atherosclerotic plaques at various aortic locations in apoE−/− mice fed a high-fat diet for 12 weeks, supporting that LT-GM3-rHDL has the best in vivo antiatherosclerotic efficacy among the tested nanoparticles. Our data imply that GM3-functionalized rHDL (i.e., GM3-rHDL) can be utilized as a novel nanocarrier to enhance the efficacy of traditional antiatherosclerotic drugs (e.g., statins).

Keywords