Nanophotonics (Feb 2022)
Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis
Abstract
Photoelectric properties of all-inorganic perovskite quantum dots (IPQDs) highly depend on their synthetic route. However, current synthetic processes of IPQDs are widely facing potential unsustainable issues of containing nonreusable and high-cost auxiliary materials. In this work, full-visible-spectrum IPQDs were successfully synthesized by an environmentally friendly ion-exchange approach with a renewable and low-cost anion exchange resin. Introducing anion exchange resin brings the improvement of both optical performance and surface morphology of the prepared IPQDs. The emission wavelength of IPQDs can be precisely controlled without changing their inherent crystal phase, and those IPQD’s single crystals with poor morphology and unstable structure are selectively removed. The photoluminescence quantum yield (PLQY) and the fluorescence lifetime of the three-primary-color IPQDs can be dramatically improved to 93.69, 89.99, and 65.03% and 71.3 ns, 22.2 ns, and 13.2 ns, respectively. Notably, the red-emitting PQDs at 622 nm exhibit a record high PLQY. By using the prepared IPQDs for photoluminescent color conversion, the three-primary-color light-emitting diodes (LEDs) provided high brightness and wide color gamut simultaneously. This study provides new ideas for the environmentally friendly and sustainable synthesis route of IPQDs, and it is expected to show great ambitions in the display field.
Keywords