Remote Sensing (Oct 2024)
A Feature-Driven Inception Dilated Network for Infrared Image Super-Resolution Reconstruction
Abstract
Image super-resolution (SR) algorithms based on deep learning yield good visual performances on visible images. Due to the blurred edges and low contrast of infrared (IR) images, methods transferred directly from visible images to IR images have a poor performance and ignore the demands of downstream detection tasks. Therefore, an Inception Dilated Super-Resolution (IDSR) network with multiple branches is proposed. A dilated convolutional branch captures high-frequency information to reconstruct edge details, while a non-local operation branch captures long-range dependencies between any two positions to maintain the global structure. Furthermore, deformable convolution is utilized to fuse features extracted from different branches, enabling adaptation to targets of various shapes. To enhance the detection performance of low-resolution (LR) images, we crop the images into patches based on target labels before feeding them to the network. This allows the network to focus on learning the reconstruction of the target areas only, reducing the interference of background areas in the target areas’ reconstruction. Additionally, a feature-driven module is cascaded at the end of the IDSR network to guide the high-resolution (HR) image reconstruction with feature prior information from a detection backbone. This method has been tested on the FLIR Thermal Dataset and the M3FD Dataset and compared with five mainstream SR algorithms. The final results demonstrate that our method effectively maintains image texture details. More importantly, our method achieves 80.55% mAP, outperforming other methods on FLIR Dataset detection accuracy, and with 74.7% mAP outperforms other methods on M3FD Dataset detection accuracy.
Keywords