Journal of Functional Biomaterials (Oct 2022)

Surface Free Energy and Composition Changes and Ob Cellular Response to CHX-, PVPI-, and ClO<sub>2</sub>-Treated Titanium Implant Materials

  • Roland Masa,
  • István Pelsőczi-Kovács,
  • Zoltán Aigner,
  • Albert Oszkó,
  • Kinga Turzó,
  • Krisztina Ungvári

DOI
https://doi.org/10.3390/jfb13040202
Journal volume & issue
Vol. 13, no. 4
p. 202

Abstract

Read online

The study evaluated the interaction of a titanium dental implant surface with three different antibacterial solutions: chlorhexidine, povidone-iodine, and chlorine dioxide. Implant surface decontamination is greatly challenging modern implant dentistry. Alongside mechanical cleaning, different antibacterial agents are widely used, though these could alter implant surface properties. Commercially pure (CP) grade 4 titanium (Ti) discs were treated with three different chemical agents (chlorhexidine 0.2% (CHX), povidone-iodine 10% (PVPI), chlorine dioxide 0.12% (ClO2)) for 5 min. Contact angle measurements, X-ray photoelectron spectroscopy (XPS) analysis, and cell culture studies were performed. Attachment and proliferation of primary human osteoblast cells were investigated via MTT (dimethylthiazol–diphenyl tetrazolium bromide), alamarBlue, LDH (lactate dehydrogenase), and fluorescent assays. Contact angle measurements showed that PVPI-treated samples (Θ = 24.9 ± 4.1) gave no difference compared with controls (Θ = 24.6 ± 5.4), while CHX (Θ = 47.2 ± 4.1) and ClO2 (Θ = 39.2 ± 9.8) treatments presented significantly higher Θ values. All samples remained in the hydrophilic region. XPS analysis revealed typical surface elements of CP grade 4 titanium (Ti, O, and C). Both MTT and alamarBlue cell viability assays showed similarity between treated and untreated control groups. The LDH test revealed no significant difference, and fluorescent staining confirmed these results. Although there was a difference in surface wettability, a high proliferation rate was observed in all treated groups. The in vitro study proved that CHX, PVPI, and ClO2 are proper candidates as dental implant decontamination agents.

Keywords