Brazilian Archives of Biology and Technology (Aug 2009)
Neural network based control of an absorption column in the process of bioethanol production
Abstract
Gaseous ethanol may be recovered from the effluent gas mixture of the sugar cane fermentation process using a staged absorption column. In the present work, the development of a nonlinear controller, based on a neural network inverse model (ANN controller), was proposed and tested to manipulate the absorbent flow rate in order to control the residual ethanol concentration in the effluent gas phase. Simulation studies were carried out, in which a noise was applied to the ethanol concentration signals from the rigorous model. The ANN controller outperformed the dynamic matrix control (DMC) when step disturbances were imposed to the gas mixture composition. A security device, based on a conventional feedback algorithm, and a digital filter were added to the proposed strategy to improve the system robustness when unforeseen operating and environmental conditions occured. The results demonstrated that ANN controller was a robust and reliable tool to control the absorption column.Deseja-se recuperar o etanol perdido por evaporação durante o processo de fermentação da cana-de-açúcar. Para tanto, faz-se uso de uma coluna de absorção. O controle da concentração de etanol no efluente gasoso da coluna é realizado pela manipulação da vazão de solvente, sendo esta determinada pelo controlador não linear proposto, baseado em um modelo inverso de redes neurais (controlador ANN). Foram feitas simulações adicionando-se um sinal de ruído a medida de concentração de etanol na fase gasosa. Quando perturbações degrau foram inseridas na mistura gasosa afluente, o controlador ANN demonstrou desempenho superior ao controle por matriz dinâmica (DMC). Um dispositivo de segurança, baseado em um controlador feedback convencional, e um filtro digital foram implementados à estratégia de controle proposta para agregar robustez no tratamento de distúrbios ocorridos no ambiente operacional. Os resultados demonstraram que o controlador ANN é uma ferramenta robusta e confiável no controle de uma coluna de absorção.
Keywords