Advances in Radio Science (Sep 2019)

A machine learning joint lidar and radar classification system in urban automotive scenarios

  • R. Pérez,
  • F. Schubert,
  • R. Rasshofer,
  • E. Biebl

DOI
https://doi.org/10.5194/ars-17-129-2019
Journal volume & issue
Vol. 17
pp. 129 – 136

Abstract

Read online

This work presents an approach to classify road users as pedestrians, cyclists or cars using a lidar sensor and a radar sensor. The lidar is used to detect moving road users in the surroundings of the car. A 2-dimensional range-Doppler window, a so called region of interest, of the radar power spectrum centered at the object's position is cut out and fed into a convolutional neural network to be classified. With this approach it is possible to classify multiple moving objects within a single radar measurement frame. The convolutional neural network is trained using data gathered with a test vehicle in real urban scenarios. An overall classification accuracy as high as 0.91 is achieved with this approach. The accuracy can be improved to 0.94 after applying a discrete Bayes filter on top of the classifier.