Mathematics (Mar 2023)

MBDM: Multinational Banknote Detecting Model for Assisting Visually Impaired People

  • Chanhum Park,
  • Kang Ryoung Park

DOI
https://doi.org/10.3390/math11061392
Journal volume & issue
Vol. 11, no. 6
p. 1392

Abstract

Read online

With the proliferation of smartphones and advancements in deep learning technologies, object recognition using built-in smartphone cameras has become possible. One application of this technology is to assist visually impaired individuals through the banknote detection of multiple national currencies. Previous studies have focused on single-national banknote detection; in contrast, this study addressed the practical need for the detection of banknotes of any nationality. To this end, we propose a multinational banknote detection model (MBDM) and a method for multinational banknote detection based on mosaic data augmentation. The effectiveness of the MBDM is demonstrated through evaluation on a Korean won (KRW) banknote and coin database built using a smartphone camera, a US dollar (USD) and Euro banknote database, and a Jordanian dinar (JOD) database that is an open database. The results show that the MBDM achieves an accuracy of 0.8396, a recall value of 0.9334, and an F1 score of 0.8840, outperforming state-of-the-art methods.

Keywords